Weanling, but not adult, rabbit colon absorbs bile acids: flux is linked to expression of putative bile acid transporters.
نویسندگان
چکیده
Intestinal handling of bile acids is age dependent; adult, but not newborn, ileum absorbs bile acids, and adult, but not weanling or newborn, distal colon secretes Cl(-) in response to bile acids. Bile acid transport involving the apical Na(+)-dependent bile acid transporter (Asbt) and lipid-binding protein (LBP) is well characterized in the ileum, but little is known about colonic bile acid transport. We investigated colonic bile acid transport and the nature of the underlying transporters and receptors. Colon from adult, weanling, and newborn rabbits was screened by semiquantitative RT-PCR for Asbt, its truncated variant t-Asbt, LBP, multidrug resistance-associated protein 3, organic solute transporter-alpha, and farnesoid X receptor. Asbt and LBP showed maximal expression in weanling and significantly less expression in adult and newborn rabbits. The ileum, but not the colon, expressed t-Asbt. Asbt, LBP, and farnesoid X receptor mRNA expression in weanling colon parallel the profile in adult ileum, a tissue designed for high bile acid absorption. To examine their functional role, transepithelial [(3)H]taurocholate transport was measured in weanling and adult colon and ileum. Under short-circuit conditions, weanling colon and ileum and adult ileum showed net bile acid absorption: 1.23 +/- 0.62, 5.53 +/- 1.20, and 11.41 +/- 3.45 nmol x cm(-2) x h(-1), respectively. However, adult colon secreted bile acids (-1.39 +/- 0.47 nmol x cm(-2) x h(-1)). We demonstrate for the first time that weanling, but not adult, distal colon shows net bile acid absorption. Thus increased expression of Asbt and LBP in weanling colon, which is associated with parallel increases in taurocholate absorption, has relevance in enterohepatic conservation of bile acids when ileal bile acid recycling is not fully developed.
منابع مشابه
Role of protein kinase C-delta in the age-dependent secretagogue action of bile acids in mammalian colon.
The role of specific PKC isoforms in the regulation of epithelial Cl(-) secretion by Ca(2+)-dependent secretagogues remains controversial. In the developing rabbit distal colon, the bile acid taurodeoxycholate (TDC) acts via intracellular calcium to stimulate Cl(-) transport in adult, but not in young, animals, whereas the PKC activator phorbol dibutyrate (PDB) stimulates Cl(-) transport at all...
متن کاملBile acids and colonic motility in the rabbit and the human.
Colonic motor activity was initiated by infusions of bile salts into the caecum or rectum of the anaesthetized rabbit. Primary bile acids were examined proximally and distally in the colon and elicited marked motor responses. Sinc dihydroxy bile acids are known to be potent inhibitors of electrolyte and water absorption in the colon, the secondary bile acid deoxycholic acid, the dihydroxyl comp...
متن کاملSubstrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters.
The substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters was determined using brush border membrane vesicles and CHO cell lines permanently expressing the Na(+)/bile acid cotransporters from rabbit ileum or rabbit liver. The hepatic transporter showed a remarkably broad specificity for interaction with cholephilic compounds in contrast to the ileal system. The anion...
متن کاملDifferences in Ca(2+) signaling underlie age-specific effects of secretagogues on colonic Cl(-) transport.
Taurodeoxycholic acid (TDC) stimulates Cl(-) transport in adult (AD), but not weanling (WN) and newborn (NB), rabbit colonic epithelial cells (colonocytes). The present study demonstrates that stimuli like neurotensin (NT) are also age specific and identifies the age-dependent signaling step. Bile acid actions are segment and bile acid specific. Thus although TDC and taurochenodeoxycholate stim...
متن کاملBile acid flux through portal but not peripheral veins inhibits CYP7A1 expression without involvement of ileal FGF19 in rabbits.
It was proposed that CYP7A1 expression is suppressed through the gut-hepatic signaling pathway fibroblast growth factor (FGF) 15/19-fibroblast growth factor receptor 4, which is initiated by activation of farnesoid X receptor in the intestine rather than in the liver. The present study tested whether portal bile acid flux alone without ileal FGF19 could downregulate CYP7A1 expression in rabbits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 290 3 شماره
صفحات -
تاریخ انتشار 2006